Mobius transform for Cadiag-2

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational Aspects of the Mobius Transform

In this paper we associate with every (directed) graph G a transform called the MObius transf orm of the graph G. The Mobius transform of the graph (pO,�) is of major significance for Dempster-Shafer theory of evidence. However, because it is computationally very heavy, the Mobius transform together with Dempster's rule of combination is a major obstacle to the use of Dempster­ Shafer theory fo...

متن کامل

A Formal Logical Framework for Cadiag-2

Cadiag-2-where "Cadiag" stands for "computer-assisted diagnosis"- is an expert system based on fuzzy logic assisting in the differential diagnosis in internal medicine. With its aid, it is possible to derive from possibly vague information about a patient's symptoms, signs, laboratory test results, and clinical findings conjectures about present diseases. In this paper, we provide a mathematica...

متن کامل

Cadiag-2 and Fuzzy Probability Logics

We briefly describe the medical expert system Cadiag-2, developed to support the differential diagnostic process in internal medicine. We propose a propositional logic called fuzzy probability logic as a possible formalization of Cadiag-2 and indicate the way of transferring Cadiag-2's methodology into this framework.

متن کامل

A generalized Mobius transform and arithmetic Fourier transforms

A general approach to arithmetic Fourier transforms is developed. The implementation is based on the concept of killer polynomials and the solution of an arithmetic deconvolution problem pertaining to a generalized Mobius transform. This results in an extension of the Bruns procedure, valid for all prime numbers, and in an AFT that extracts directly the sine coefficients from the Fourier series.

متن کامل

A generalized Mobius transform, arithmetic Fourier transforms, and primitive roots

A general approach to arithmetic Fourier transforms is developed. The implementation is based on sine and cosine killer procedures pertaining to a generalized Möbius transform involving reduced periodic multiplicative arithmetical functions. It is shown that cosine killer procedures exist whenever one half of Euler’s totient function of the order of the transform is odd. Primitive roots and ind...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computer Science and Cybernetics

سال: 2016

ISSN: 1813-9663,1813-9663

DOI: 10.15625/1813-9663/13/3/8018